

Reg. No. : .....

Name : .....

# Third Semester B.Tech. Degree Examination, April 2015 (2013 Scheme) 13.305 : DIGITAL SYSTEM DESIGN (FR)

Time: 3 Hours

Max. Marks: 100

### PART-A

Answer all questions. Each question carries 2 marks.

- 1. Simplify the following expression:
  - a) y = (A + B) (A + C')(B' + C')
  - b) T = AB + (AC)' + AB'C (AB + C)



- 2. Design basic gates (AND, OR, NOT) using 2 x 1 multiplexer.
- 3. How will you implement a full subtracter using full adder and gates?
- 4. List the difference between Synchronous reset and Asynchronous reset.
- 5. Give the circuit to extend falling edge of the input by 2 clock pulse.
- 6. Differentiate between Mealy and Moere machine.
- Draw the logic diagram of SR latch using NOR gates. Also give its excitation table.
- 8. List major differences between PLA and PAL.
- 9. How divide overflow problem can be avoided?
- Why should sign of the remainder after a division be the same as the sign of the dividend. (10×2=20 Marks)

D flip flops.



10

#### PART-B

Answer one full question from each Module. Each question carries 20 marks.

Module - I 11. a) Design a 8-bit odd parity detector. 4 b) Design a combinational circuit with three inputs x, y and z and three outputs A, B, C. When the i/p binary is 0, 1, 2 or 3 the binary o/p is one greater than i/p. When the binary i/p is 4, 5, 6 or 7 the binary o/p is one less than i/p. 10 c) Realize the circuit using NAND gates alone. 6 f = A'B + B'C + A'C'OR 12. a) Design a combinational circuit that will convert BCD codes into corresponding Excess three codes. 10 b) Minimize the function  $A = \Sigma(2, 3, 7, 10, 12, 22, 27, 30, 31) + \phi(8, 11, 14, 28, 29)$ where of denotes don't care condition, using Quine McCluskey method. 10 Realize the circuit using NOR gates. See the property of the proper 13. a) Implement the functions using : 10 i) 4 × 1 MUX ii) 3 × 8 decoder. A) F(X Y Z) = {0, 2, 4, 7} nosm specificacy weeking and adjustment of the control B)  $T(A B C) = \{1, 2, 6\}.$ b) Design a 4 bit carry look ahead adder. OR 10 14. a) Design a 3 bit universal shift register. b) Construct a state diagram for a more sequential circuit that will detect the serial input sequence X = 010110. When the complete sequence has been detected, then cause output 2 to go high. The input sequence may overlap and circuit should be able to detect overlaps. Also design the circuit using



## Module - III

| 15. | a)    | Design a counter that counts in sequens 0, 1, 5, 3, 7 and repeat the sequence. Use T flip flops.                                                                     | 10 |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | b)    | Design a circuit using ROM that generates Fibonacci series upto 10 bit.                                                                                              | 10 |
|     |       | OR                                                                                                                                                                   |    |
| 16. | a)    | Design a BCD subtracter using PLA.                                                                                                                                   | 10 |
|     | b)    | Design an up/down 3 bit synchronous counter using D flipflops.                                                                                                       | 10 |
|     |       | Module – IV                                                                                                                                                          |    |
| 17. | a)    | Derive an algorithm in flow chart form for adding and substracting two fixed point binary numbers when negative numbers are in signed 1's compliment representation. | 10 |
|     | b)    | Show that there can be no mantissa over flow after a multiplication operation.                                                                                       | 10 |
| *   |       | OR                                                                                                                                                                   |    |
| 18  | 3. a) | Formulate a hardware procedure for detecting an overflow by comparing the sign of augend and addend. The numbers are in signed twos compliment representation.       | 10 |
|     | b     | Derive an algorithm in flow chart form for the restoring method of fixed point division.                                                                             | 10 |
|     |       | TRIVANDRUM-11                                                                                                                                                        |    |